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PREFACE

Thisisthe Spring 1999 edition of the Tornado Warning Guidance document. This edition updates
theinformation containedinthe previousedition that was devel oped for the 1997 convective season.
Some of the information in the document is unchanged from the 1997 document, but much of itis
updated. In particular, a few of the general guidance comments are updated, and a few new
comments have been added. A new section isincluded describing the Build 10 Tornado Detection
Algorithm (TDA), and is to be used as a supplement to the Build 10 TDA training manuas. A
section was renamed from “ Radar Guidance” to “Latest resultsfrom NSSL a gorithm devel opment
(MDA and TDA)”. This section describes some statistical analysis of radar agorithm data using
NSSL’s experimental algorithms (which are available on WATADS). Many new figures and
findings are presented in this section. Finally, some of the references have been updated. It is
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recommended that all WSR-88D users read this document fully to remain up-to-date on the latest
information.
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1 Introduction [Top]

Discriminating between thunderstorms likely to produce a tornado and those not likely to produce
atornadoisvery difficult. Operationa meteorologiststasked withissuingtornadowarningsarefaced
with many challenges. Many inputs, including radar signatures, spotter reports, and the mesoscale
environment, play apart in the decision-making process. The most often used WSR-88D signatures
inthisprocessareathree-dimensional analysisof the magnitude of mesocyclonerotationinastorm,
the strength of gate-to-gate shears, or presence of a Bounded Weak Echo Region (BWER) or hook
echo. Many times, radar data has helped generate tornado warnings with significant lead time.
However, occasionally tornadoes have occurred without warnings, or warnings based upon rotation
have resulted in false alarms. The primary reasons for this are that the radar suffers from sampling
limitations, and the tornado formation process is not yet well understood.

Theinformation in thisdocument ismeant to provide meteorol ogistswith someof thelatest research
findings related to the tornado warning decision-making process. This information is based on
preliminary research results from the Verification of the Origins of Rotation in Tornadoes
EXperiment (VORTEX) (Rasmussen et al. 1994), aswell asthe statistical analysis of a significant
number of WSR-88D storm casesfrom avariety of sitesacrossthe U.S. as part of the mesocyclone
and tornado detection algorithm research being performed at NSSL.

Research continues at the National Severe StormsLaboratory (NSSL) and el sewhereto improvethe
ability to discriminate between tornadic and non-tornadic storms. One of the primary goals of
VORTEX (which was conducted in Central and Southern Great Plains) was to increase our
understanding of why some storms produce tornadoes while others do not. While detailed analysis
of the data is ongoing, some observations can be made and considered important guidance for the
warning forecaster. A list of tornado warning considerations, including some gathered from analysis
of the VORTEX data sets, will be presented in Section 2.

The WSR-88D Build 10 includes the new Tornado Detection Algorithm (TDA) (Mitchell et al.
1998) which has replaced the pre-Build 10 TV S Algorithm (hereafter “old TV S Algorithm”™). This
software upgrade represents a significant improvement in the way the original algorithm detects
tornadic vortex signatures. For example, less stringent strength thresholds are used in the TDA than
in the old TVS Algorithm, and a more robust vertical association scheme is used. In addition, the
TDA will operateindependently of the WSR-88D Mesocyclone Algorithm (88D-MA) and will not
require the presence of a mesocyclone detection. Section 3 of this document includes information
on the Build 10 TDA to supplement the Build 10 training guides.

NSSL has expended considerable effort to improve the performance of WSR-88D a gorithms that
are used in the tornado warning decision-making process. The NSSL Mesocyclone Detection
Algorithm (MDA) (Stumpf et al. 1998) includes the ability to detect a broader spectrum of
storm-scale vortices such as low-topped or mini supercells, and displays the algorithm output with
avariety of color-coded tables, ranking attributes, and trend charts. In addition, the NSSL MDA has
the capability to provide automated support to forecaster decision-making through the use of neural



network probabilities. The NSSL MDA Algorithmwill be acandidate for thefirst software upgrade
after implementation of the WSR-88D Open Systems RPG (ORPG). The NSSL MDA isavailable
right now viathe WATADS softwarefor testing on previously-collected WSR-88D datasets. NSSL
also continues the experimental development of the TDA. This slightly more robust version of the
Build10 TDA, known astheNSSL TDA, isalsoavailableviaWATADS. NSSL hasalso devel oped
aBWER Algorithm which has been undergoing testing since 1998.

Section 4 of this document contains statistics from the NSSL MDA, NSSL TDA, and the NSSL
BWER Algorithm on a large data set of tornado-producing storms as well as some non-tornadic
supercell events. The location and storm type for the 43 days which comprised the statistical radar
guidancedatabasearegiveninTable 1. This43-day dataset islarger, by 14 cases, than the data set
used to devel op the statisticsin the 1% Edition of the Tornado Warning Guidance document (Spring
1997). This expanded 43-case data set is more geographicaly (and synoptically) diverse, and
contains eight new “null” cases (no tornadoes reported).

Section 5 summarizes this document. With the delivery of ORPG to the field in two to three years,
radar assistancein the detection and warning of tornadoes should beimproved. For the near termand
even beyond any known improvements, meteorologists are encouraged to continue using ALL
possible information at their disposal in order to issue successful tornado warnings. Thisincludes
spotter reports, storm history, mesoscale environment, and storm/vortex evolution and trends
(including reflectivity trends).



2.

General Guidance[Top]

This section provides a list of tornado warning guidance that is based on a combination of 1)
observations of tornadic storms during VORTEX, 2) applied research utilizing a number of WSR-
88D case studies, and 3) observations during operational real-time tests of the NSSL Warning
Decision Support System (WDSS). Some of thislist was compiled by commentsfromtheVORTEX
scientists after thetwo-year field phase (1994-1995) of the experiment ended. It contains scientists’
initial impressions during the field experiment and some preliminary qualitative results regarding
tornadogenesis. The list may be updated or refined at a later date as more conclusive quantitative
resultsare formulated and a stronger consensusisreached by scientistsinvolved in various projects.

a)

b)

d)

Supercells tend to produce significant tornadoes in regions with enhanced near-ground
storm-relativehelicity. In many situations, enhanced low-altitude helicity will be associated
with backed and strengthened surfacewinds. All availablelow-altitude wind data should be
monitored, including routine surface observations, mesonetwork data, and lowest-tilt radial
velocity. Mesoanalysisisvery important. Thenear-storm environment canvary dramatically
over fairly short distances and is subject to rapid change (this was observed on many
VORTEX storm days; see Markowski et al. 1998)

Because of baroclinic effects along shallow boundaries, the immediate cool side of the
boundary is often an area of strongly enhanced horizontal vorticity. Even lacking wind and
temperature data, the mere presence of aboundary should |ead to heightened awareness, and
storms crossing or interacting with boundaries merit special scrutiny for rapid increases in
rotation in their lower atitudes. Thisimpliesthat forecasters need to remain aware of the
locations of radar fine lines, satellite-indicated cloud lines, and mesonet-detected surface
temperature gradients and wind-shift lines. Storms interacting with boundaries should
be closely monitored because tornadogenesis can occur rapidly.

The chancesfor significant tornadoes on the cool side of boundariesdecrease as low-altitude
cold air becomesincreasingly deep and CAPE approacheszero. Thesearedifficult to assess
in real time, but the key fact is that if the air still contains some CAPE, despite being
relatively cool, the potential for significant tornadoes exists; the potential is greatest where
the cool air is shallowest and the enhanced helicity resides near the ground (the immediate
cool side of aboundary, where the temperature difference between the two air massesistill

rather small).

A high quality spotter network is vital. Whenever possible, one should not rely solely on
radar data for making warning decisions, as even storms having strong low-altitude
mesocyclones may not produce atornado (thiswas observed severa timesduring VORTEX).
Warning forecasters should make use of all available information including reliable spotter
reports (especialy when storms are at far ranges), storm history, other remote sensing tools
(e.g., satellite), aswell as having agood understanding of the mesoscal e environment of the
storm.



f)

9)

h)

Be awarethat some storms may produce tornadoesrapidly with little advance warninginthe
way of algorithm detections or rotation at the 0.5° volume scan. Often, the only low-altitude
precursor from radar in these situations is an area of strong, low-altitude (0-2 km AGL)
convergence (Burgess and Magsig 1998) below the base of the organizing mesocyclone
(remember that 0-2 km AGL information is only observable out to about 65 nm). Also,
second and succeeding mesocyclone cores (cyclic mesocyclogenesis) typically have very
short organizing stages as they quickly form over a large depth and strengthen rapidly.
Therefore, explosive development can take place during the period of asingle volume scan.
The opposite (rapid dissipation) was aso observed during VORTEX.

Not every TVS forms at mid altitudes and builds downward over time with the embryonic
tornado. Trapp et al. (1998) observed that some TV Ss develop rapidly near the surface or
simultaneously at low and mid altitudes, especialy in squall-lines (but also in some
supercells). Be aware of both types of TVS development, and anticipate low-level
development with squall lines.

Storm motion and tornado motion (direction and speed) may be significantly different. For
example, ontwo VORTEX days (6/2/95 and 6/8/95), there were several instanceswherethe
parent thunderstorm was moving toward the northeast while the tornado was moving north.
In addition, for another case, the tornado's forward movement was measured at 60 mph only
to become nearly stationary before it dissipated. (Learning more about the reasons for
changes in tornado motion will be atopic of future VORTEX research). Be careful about
issuing tornado warning locations based on the storm cell centroid motions; use the motion
of the radar vortex signature, whenever available.

In many instances, the radar-observed vortex signature can, depending on range, appear to
dissipate prior to the actual dissipation of the tornado, as the shrunken tornado vortex (or
tornado cyclone) becomes increasingly difficult to observe given WSR-88D sampling
limitations. This period without aradar-observable vortex signature may include the most
intense and damaging phase of the tornado. It isagood rule of thumb to continue tornado
warnings for a few volume scans following the dissipation of the radar-observed vortex
signature, especialy in the absence of reliable spotter information and/or during nighttime
hours.

Data collected during VORTEX using the Doppler On Wheels (DOW), and data from a
variety of WATADS-analyzed WSR-88D cases, verify that avariety of vortex scales occur
within storms, ranging from the scale of the actual tornado (and even its sub-vortices), up
to the scale of the rotating updraft/downdraft of the supercell storm (mesocyclone), with
vortices intermediate to these scales also occurring (sometimes referred to as the tornado
cyclone). Some data suggest that these vortices may be embedded within each other, or that
some vortices may taper or widen in diameter at different heights. Radar users should be
aware that the WSR-88D, with its inherent sampling limitations, may detect a mixture of



)

k)

these kinds of vortices. Operators should also be aware that only in very rare instances can
the WSR-88D actually observe the actual tornado, again, owing to the sampling limitations
of the radar (the tornado must be very large and/or very close to the radar). In most
instances, aTV Sisactually thesignature of anintermediate-scalevortex, observed asagate-
to-gate velocity couplet. See this presentation by Stumpf (1998) for figures.

Radar-observable vortex signatures which are associated with tornadoes can occur with a
variety of storm types. These range from the classic Great Plains supercell (with large
horizontal and vertical extent) as well as supercells with small horizontal extent (mini
supercells), supercellswith small vertical extent (low-topped supercells), or both (Ilow-topped
mini supercells). Tornadoesand radar-observablevortex signatureshavea so been observed
with storms embedded within tropical cyclone rain bands (“TC-mesos’), aong the leading
edge and comma head of bow-echo squall lines, and with rapidly-developing convection
(non-supercell tornadoes, landspouts, waterspouts). Do not be misled into believing that all
supercellsarethe same - like the classic big isolated supercells more common to the Central
and Southern Plains. Be awarethat many varieties exist, including somethat probably have
not yet been observed. NSSL maintains a WSR-88D tornado case-study Web page that
contains the description (with figures) of a number of these typical and atypical tornadic
storm cases.

Because the WSR-88D provides only discrete horizontal samples of the atmosphere (1°
azimuthal resolution; 1 km and 250 m range resolution for reflectivity and velocity
respectively), storm-scale vortices can only be depicted in a degraded sense (Wood and
Brown 1997). Factorsinclude vortex core diameter to beam width radiusratio, strength of
rotationinthevortex, and the offset between the vortex centroid and the centroid of the radar
beam. A particular vortex of agiven diameter and rotational velocity could be viewed by the
radar in a number of configurations given its range from the radar and the vortex/beam
centroid offsets. And, if avortex is shaped asymmetrically, changes in viewing angle will
also alter its radar depiction. Consider that these sampling limitations will reduce the
velocity estimate of the vortex. Consult Wood and Brown (1997) for information depicting
the degree of velocity degradation in radar-sampled vortices.

At extended ranges, the radar horizon prevents sampling below the mid-atitudes of
mesocyclones. Thus, the radar may observe mid-altitude rotation that is strong for storms at
extended ranges, but the radar cannot determineif the low-altitude rotation is strong or even
exists. Users should employ the use of spotter reports, or data from another radar sampling
the signature from acloser range. At near ranges, the “cone-of-silence” effect will prevent
sampling of vortices above a certain atitude, and only a portion of the vortex can be
diagnosed for warnings. Forecastersshould use datafrom other WSR-88Dsat farther ranges
to sample the mid- and high-altitude data being missed in the cone-of-silence.

Many algorithm-detected radar-observable vortex signatures (both mid-altitude and low-
atitude) are NOT associated with tornadoes on the ground. Bear in mind that in some



p)

a)

instances, atmospheric vortices can be too small (owing to sampling limitations), or hidden
by radar data artifacts (such as range-folded data). Radar algorithms cannot detect these
unobservable vortices. Also, some vortex detections may be the result of dealiasing errors,
leading to false detections. The user should examine vel ocity images aong with algorithm
output at all times.

When issuing awarning based on radar, remember thetotal timeinvolved includes: viewing
and analyzing the radar vortex signature (this can take anywhere from 1 minute to 6 minutes
if you are using algorithm products as guidance, asthey are generated at the end of avolume
scan), mechanically composing the warning message (2-3 min., or 1 min if using AWIPS),
and disseminating the warning (1 min. or more). With the possible lapse of 3 to 10 minutes
of time, the location of the mesocyclone or Tornadic Vortex Signature (TV S) that triggered
the decision to issue the warning could have moved a considerable distance. Thus, this
trandated distance of the signature needs to be taken into account when locations are
mentioned in the warning (especially when using algorithm overlaysfor |ocation guidance).
Thistrandated distance also needs to be considered for warnings in downstream counties.

Adaptable parameter sets are being provided with the Build 10 TDA that correspond to a
variety of storm types. It is important to understand that storm types are a factor of the
storm’ smesoscal e or near-storm environment (NSE), and NOT dueto theregion of theU.S.
that thestormisoccurring. The NSE should be closely monitored during warning operations
so that the proper adaptable parameter sets are always used. Keeping adaptable parameter
settings at some site-selected default value because of regiona expectations of a certain
storm type (i.e., mini supercellsalways occur in the Northeast) may result in poor algorithm
performanceif the prevailing NSE does not correspond to the default settings. For example,
if an NSE supportive of large and tall (“Oklahomarstyle”) supercells is occurring in New
Y ork, use the TDA adaptable parameter developed for these types of storms.

Based on agorithm studies and field surveys, the OSF now offers improvement to
performance of the current WSR-88D Mesocyclone Algorithm (88D-MA) by alowinglocal
radar sites the option to lower the Threshold Pattern Vector (TPV) &. This change appears
to improve the probability of detecting tornadic vortices and increases the lead times for
warnings in certain storm situations. 2

Guidelines for warnings based on established thresholds for shear have limitations at far
ranges. A series of mesocyclone strength nomograms (which display rotational velocity as
afunction of range) for three different vortex diametersare given in Figurel, Figure 2, and
Figure 3. The variation of the slopes of the lines on the nomograms illustrate this
range-dependency problem. The slopes become progressively steeper for the 2 nm and
especially the 1 nm diameter nomograms. M eteorol ogists who use these nomograms should
recognize that there can be considerable overlap in the strength categories for a given
rotational velocity for different types of storms (smaller diameter mini supercells, for
example).




3. Build 10 TDA Guidance [Top]
a Introduction

Performance characteristics of the new Build 10 Tornado Detection Algorithm (TDA) (Mitchell et
a. 1998) differ considerably from the old TVS Algorithm. The old algorithm located vertically
correlated vel ocity maximaand minima(not necessarily gate-to-gate) anywhere within the confines
of a previoudy-identified mesocyclone. When the old algorithm triggered in the past, tornadic
events were usually already occurring. The new TDA identifies two-dimensional (2D) features,
correlated in height, that contain cyclonic gate-to-gate shear. The TDA finds many three-
dimensional (3D) gate-to-gate vortices that the old algorithm missed. This increased sensitivity
allows the new algorithm to detect locally-intense, high-shear vortices associated with developing
tornadoes. However, not all high shear vortices are associated with tornadic damage on the ground.
Therefore, the TDA will trigger more frequently than the old algorithm. Build 10 TDA output, as
with any algorithm, should be considered guidance. Warnings should not necessarily be issued on
all TDA detections.

Forecasters should evaluate the identified velocity feature, reflectivity structure, environmental
factors, and thelir trends before issuing atornado warning. For a more complete comparison of the
old TVS Agorithm and the Build 10 TDA Algorithm, see the WSR-88D Build 10 Training
Document developed by the WSR-88D OSF Operations Training Branch.

b. Tornadic Vortex Signature (TVS)

As stated previoudly, forecasters should be aware that only in very rare instances can the WSR-88D
actually observethe actual tornado, owing to the sampling limitations of the radar (the tornado must
be very large and/or very close to the radar). In most instances, especially at longer ranges, aTVS
isactually the detection of an intermediate-scale vortex or asmall mesocyclone, observed asagate-
to-gate velocity couplet. Also, Trapp et al. (1998) observed that nearly 48% of all the TV Sfeatures
contained in their study (based on manual detection of gate-to-gate shear) developed upward from
the surface or ssimultaneously over alarge depth (non-descending) and that about 52% descended
from mid altitudes. Many descending TV Sfeaturesevolved over 15 minutes. Non-descending TVS
featuresevolved quickly (5 minutes, or about onevolume scan). Most squall linetornadoesevolved
quickly and were of the non-descending type. Isolated supercell tornadoesevolved in both manners.

In supercell thunderstorms, if aTV Sisidentified adjacent to astrong reflectivity gradient, especially
near the back of a storm, near a notch, appendage, or hook on the right rear flank of a storm, then
special consideration should be given for the warning decision. Strong reflectivity gradients are
many times associated with strong updrafts that support tornadogenesis.

Compared to the old algorithm, the TDA detects more signatures in squall lines and along gust

fronts. Forecasters should give special consideration to TDA detections that occur aong leading
edges of squall lines, along intersecting outflow boundaries, or within bow-echo comma heads.
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Forecasters should anticipate rapid evolution, on the order of one volume scan, with line storms.
TDA detections that aren’t associated with these storm structures or aren’'t in the positions noted
above are more likely not to be associated with tornadoes.

TDA may identify multiple TV Ss in the same storm cell. Forecasters should not always infer a
greater likelihood of tornadoes because the TDA identifies multiple TV Ssthat are < 5 km of each
other. Usually, thereare multiple coresof tornadic shear within astrong supercell, and the TDA can
isolate these cores.

Theold TV SAlgorithm missed most vortices, had almost zero lead time, and had no time continuity.
The new algorithm, because of its greater sensitivity, provides time/space continuity and positive
leadtimes. Thenew algorithm hasidentified TV Ssnearly continuoudly for long-lived supercel | sthat
cyclically produced tornadoes.

Do not expect to see “drop-out gates’ (missing data) in velocity products with high shear regions
(e.g., mesocyclones). TheBuild 10 Dealiasing Algorithm has been modified so that velocity drop
outs do not occur. Thiswas implemented to give the new TDA achance to evaluate al available
velocity data, rather than skip over missing data that could contain TV Ss (see the WSR-88D Build
10 Training Document).

The new algorithm can be affected by ground clutter (especially when the reflectivity threshold is
set to a low number). In rare instances, the Build 10 velocity Dedliasing Algorithm will retain
velocities associated with ground clutter®. Warning forecasters should be careful if false TDA
detections occur in regions of ground clutter breakthrough (near the RDA or near mountainous
terrain). If thissituation occursduring storm events, forecasters should use extreme caution in their
warning decisions, utilizing additiona information such as spotter reports or radar and algorithm
trends, and examine data for obvious noise.

c.  Elevated TVS(ETVYS)

ETVS wasoriginally developed tofill gapsin TV Stracking and trends. Even though TV Stracking
and trends were not implemented in Build 10 (yet, are availablein WATADYS), the computer code
for ETV Sdetection capability was added because @) it would be eventually needed for tracking and
trends (for future TDA versionsinthe ORPG), and b) it wasfelt that ETV Sinformation, with further
evaluation and refinement, could provide additional |ead-timeinformation to forecasters (see Trapp
et a. 1998).Subsequent additional testing and feedback revealed that most WDSS test sites did not
find ETV Sinformation useful and had turned them off. By default, the display of ETVSisturned off.

Therefore, the OSF currently recommends that the number of ETVS s be set to zero at the
UCP. Some sites may determine that by displaying the ETV Ss, theincrease in algorithm POD may
be more important than the increase in algorithm FAR. Sites should be aware that the choice to
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display ETVSs will affect private-sector users who may obtain this information through the
Combined Attribute Table available from aNIDS vendor.

For a complete description of how to control the display of ETVSs and how to set other TVS
adaptable parameters, see the WSR-88D Build 10 Training Document devel oped by the WSR-88D
OSF Operations Training Branch.

d. Adaptable parameter sets

TDA has been designed to find all 3D vortices characterized with tornadic-like shear (potentially
tornadic) and then filter away those not associated with tornadoes. The idea behind this concept is
that stronger and deeper 3D vortices are more likely to be associated with tornadoes than weak and
shallow vortices. The gate-to-gate velocity difference at the lowest radar elevation, the maximum
gate-to-gate velocity difference anywhere in the 3D vortex, and the vortex depth are used in this
filtering process.

OSF and NSSL personnel have defined several adaptable parameter sets to be used with the new
TDA. These parameter sets define minimum threshold values of 3D Feature Low-Level (or low-
atitude) Delta Velocity (LLDV), TVS Maximum Delta Velocity (MDV), and 3D Feature Depth
(DPTH). These parameters have been optimized for different storm types. The definition and
development of these adaptable parameter sets can be found in Lee and Mitchell, 1999.2  Further
information about adaptable parameter sets is also available in the RPG Adaptable Parameter
Handbook.

Performanceof the WSR-88D Build 10 TDA wasoptimized by cal culating Probability of Detection
(POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) values (Wilks 1995) for many
combinationsof LLDV, MDV, and DPTH®. The combinations of adaptable parameter values that
generated the best TDA performance (highest CSI and lowest FAR) were established for a an
isolated supercell data set, acomposite data set (default set), and asquall linedataset. Theisolated
supercell data set (prepared after the development of the Build 10 Training Guide) only contained
“traditiona” strongandtall supercells. The composite dataset contained “traditiona” strongandtall
isolated supercells, squall lines, mini supercells, and tropical -cyclone-related supercells. The squall
line data set contained only squall lines. Specia classes of tropical-cyclone-related cases and
miniature-supercell caseswere a so tested to seeif better performing adaptabl e parameter sets could
be found for them. For the tropical and miniature classes, no improvement was found over using
the squall line adaptable parameter set. The* squall line/other” adaptable parameter set is, therefor,
intended for use with squall lines, miniature supercells, and tropical-cyclone-related supercells.

Overall performance scores arereported in Table 2. TDA performed best on the isolated supercell

data set, and a decrease in skill was noted for the composite/default data set and, in particular, the
squall line data set. Four adaptable parameter sets are recommended for use with TDA:
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1. Composite/Default Adaptable Parameter Set - Thisset performed best ontheentiredata
set. It is recommended for use when the storm type is mixed within the maximum range of the
algorithm (or not known with much certainty) and when the user wants to stick with one adaptable
parameter set and not make any changes.

2. |solated Supercell Adaptable Parameter Set - This set performed best on isolated
supercells(including LP, Classic, and HPvarieties). Itisrecommended any timetheweather pattern
favors a preponderance of isolated supercells.

3. Squall line/Other Adaptable Parameter Set - This set performed best for squall line
cases, tropical-cyclone-related cases, and miniature supercell cases. It is recommended for any
specific storm type except isolated supercells.

4. Minimized Adaptable Parameter Set - This set was derived to match as closely as
possible to the performance of the old Build 9 (and previous builds) TVS Algorithm. It is
recommended only for situations where the need to minimize the number of overall detections and
false detections supercedes the overall better performance of the other adaptable parameter sets.

Adjusting the adaptabl e parameter sets on the basis of Near-Storm Environment (NSE) data should
provide TDA performance comparable to the levels indicated in Table 2. Some additional
improvement in performance may be obtained from further local-office study of storm types and
TVS characteristics for local areas. Future detailed studies may suggest ranges of acceptable
individual parameters (within and apart from sets of parameters) from which local-office personnel
could choose appropriate values to “tune’ the algorithm. Such studies, utilizing the WATADS
software are highly recommended. Thosewho perform such studies are cautioned to make sure that
they have enough local casesto provide astatistically significant data set. If individual local offices
have only afew casesfor various storm types, they are encouraged to combine data sets with nearby
offices who experience similar storm types. Until adequately-sized local data sets have been
collected and analyzed, local officesare encouraged to choose between the four adaptabl e parameter
sets presented here whose performance has been quantitatively measured.

Outside of the four adaptable parameter setsthere arethree site-adaptable TDA parametersthat can
be changed at the UCP: the Maximum Number of Elevated TV Ss, the Minimum Reflectivity, and
the Maximum Pattern Vector Range. The Maximum Number of Elevated TV Ss can range from O
to 25 depending on the desired TDA Algorithm performance at each site. As noted in the ETVS
section, sites should be aware that choosing to display ETV Sswill also impact private-sector users
who may obtai n thisinformati on through the combined attributetableavailablefromaNIDSvendor.

The Minimum Reflectivity site-adaptable TDA parameter isthe minimum reflectivity required for
avelocity bin to be used in creating a pattern vector for TDA. The default valueisset to 0 dBZ, and
the adjustable valuesrangefrom 0to 20 dBZ. Using higher valueswill result in adecreased number
of TDA detectionsand aslight decreasein FAR. Significant “missed detections” have occurred with
20 dBZ values, particularly with Classic-LP type storms with weak reflectivitiesin the hook echo.
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The Maximum Pattern Vector Range is the maximum range that pattern vectors are identified for
the TDA Algorithm. The default is set at 100km, and the adjustable values range from 100 to 150
km. TDA detections at far ranges should be used with caution due to radar sampling limitations.
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4, Latest Statistical Results from NSSL Algorithm Development (MDA, TDA, BWER)
[Top]

a Introduction

This section presents some statistics from of the latest results from algorithm devel opment work at
NSSL. Aspart of thiseffort, 85 velocity and reflectivity parameters were statistically analyzed, for
their ability to discriminate between tornadic and non-tornadic vortices in storms (descriptions for
some of these radar-derived parameters are contained in Appendix A). It is understood that
operational warning forecasters have considerabl e timelimitationsthat prohibit examination and/or
computation of many of the 85 parametersthat have been measured here. Thisanalysisisoffered as
important background information and as an attempt to highlight the most important parameters (or
“best predictors’ for diagnosing tornadic vortices), and only those best predictors which are easily
determined using either algorithm output or via quick PUP or AWIPS examination.

Ideally, for the statistical analysis, one would prefer that all of these parameters be measured
manually (i.e., by aradar meteorologist) to minimizeerrors. However, past experienceat NSSL has
shown that this process is very time consuming (thus, greatly limiting the amount of data that can
be statistically evaluated). Instead, it has been decided to rely on the latest versions of NSSL’s
Mesocyclone Detection Algorithm (MDA) (Stumpf et al. 1998), Tornado Detection Algorithm
(TDA) (Mitchell et al. 1998), and experimental Bounded Weak Echo Region (BWER) Algorithm
to identify and measure these parameters. While this might introduce some errorsinto the analysis,
it also alows analyses of amuch larger amount of data than could be done manually. Thisis done
with the confidencethat thenew NSSL algorithmsarerobust enough that the advantages (larger data
set) of this procedure outweigh the disadvantages (additional errors).

It should be noted that only output from the NSSL TDA is available on the PUP. When any NSSL
MDA parameters are presented as best predictors, each variable can either be measured manually
at the PUP (e.g., using the V -shear function), or the corresponding 88D Mesocyclone Algorithm
detection attributes can be used as a proxy. It is aso shown that the only BWER Algorithm
parameter that showed predictive strength wasthe simple existence of aBWER detection. Although
there is no BWER Algorithm available on the PUP, manual reflectivity anaysis (via a 4-panel
display or WER product) can determine the existence of a BWER in a storm.

All of the NSSL MDA and BWER products are available via post-anaysisusing WATADS. They
are also available to some NWS offices on NSSL’s Warning Decision Support System (WDSS).
WDSS users can directly utilizethe NSSL MDA and BWER output rather than using PUP proxies.

What is presented here arethe major resultsof the statistical analysisof the 43-casedataset. Results
take the form of a number of plotsfor the algorithm parameters which have been deemed the “best
predictors’ for tornadoes. A discussion on how to usetheseplotsisincludedinthetext. A technical
discussion of the statistical analysisis presented in Appendix B.
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b. Data

For the 43-case data set (Table 1), there were anumber of MDA, TDA, and BWER detections. The
following subsets of data were created to do the statistical analysis:

Subset | : circulations detected by MDA, only.
Subset 11 : circulations detected by TDA, only.
Subset 111 : circulations detected by MDA and TDA, jointly.

Subset IV : circulations detected by MDA and BWER, jointly.
Subset V : circulations detected by TDA and BWER, jointly.
Subset VI :  circulations detected by MDA, TDA, and BWER, jointly.

The entire data set constitutes 43 days of storm data (Table 1). The MDA dataconsist of all MDA
detectionsthat are of Strength Rank > 1 [see Stumpf et al. (1998) or Appendix A for adefinition of
Strength Rank]. The TDA dataconsist of all TDA detections whose |ow-altitude and mid-atitude
gate-to-gate velocity differences are at least 11 m s*. All MDA and TDA detections are either
associated with tornadoes (if atornado occurred during the previous 5 or 6 minute volume scan, is
occurringinthe present volume scan, or will occur within 20 minutesfrom the present volume scan),
or not (called “non-tornadoes’)®. Both algorithms used a 0 dBZ threshold for the Minimum
Reflectivity adaptable parameter.

The total sample size, N, the number of non-tornadoes, N,, the number of tornadoes, N,, and the
a-priori probability (i.e. climatological, and prior to additional statistical analysis) of tornado, pl
= N,/N, in each of these subsets is given in Table 3. Also included is the number of attributes
(independent variables) in each subset.

Even without any analysis, the a priori probability (i.e., prior to additiona statistical analysis) of
tornado for the six subsets (Table 3) offersauseful guidance. An MDA detection of Strength Rank
greater than or equal to five (the “Mesocyclone” classification), and a TDA detecgion meeting the
Default-TV S parametersin Table 2, separately, have arelatively low probability of being tornadic
(i.e.,10.4% and 6.3% respectively); ajoint detection of aMesocycloneand aDefault-TV Shasa31%
probability of being tornadic. This probability israised to 38% if thejoint MDA/TDA detectionis
aso accompanied by aBWER. In other words, acirculation detected by both MDA and TDA, or by
al threealgorithms (MDA, TDA, BWER) should be given serious consideration as being tornadic.
Therefore:

. Any radar signature which has both a Mesocyclone and a Default-TVS
detection should be given serious consider ation as being tornadic.

Of the subsets that included the BWER Algorithm output, it was found that none of the “best
predictors’ were BWER attributes. Therefore, for this document, results from subsets IV, V, and
V1 arenot included. However, itisstill important to note, given the 38% climatol ogical probability
that any signature with an MDA, TDA, and BWER detection is tornadic, that:
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. Even mor e consider ation should be given to signatures with both an MDA
detection, a TDA detection, and an analyzed BWER (or BWER detection is
made using the WDSS).

C. The best predictors

Using the statistical analyses presented in Appendix B, Table 4 lists the variables which have been
identified as “best predictors’ for diagnosing tornadoes from MDA and TDA Algorithm output.
Thesearethevariables, from the summary in Appendix B, which can bedirectly computed from the
PUP or WDSS, or areavailablefrom the Build 10 TDA. The WDSS variables should only be used
during warning operations if your office is equipped with a WDSS (although, these variables can
be examined in post-analysis using WATADS). Table 4 is an interactive table with links to
probability plot figures and links to decision threshold figures for each of the best predictors.
Appendix A contains a description of each of the best predictors, and ways to compute these from
the PUP. Table 4 also provides links to each of the variable descriptionsin Appendix A.

Probabilitiesgenerated for each parameter are based on the number of tornadic circulations (defined
asacirculation where atornado has occurred in thelast 5 or 6 minute volume scan, is occurring, or
will be occurring within the next 20 minute period) divided by the total number of circulations
detected (Eqg. 1 in Appendix B).

The range of values of the decision threshold over which performance is maximized is aso given
in Table4. The decision threshold is the lowest value at which decision is made if the measured
attributefallsat or abovethethreshold. For example, if the decision threshold for aparameter is 30,
then one should give special consideration for issuing awarning for valuesat or above30. Thetwo
exceptions are indicated by the * (base parameters), in which the special consideration should be
given to values at or below the threshold. The variables marked with ** are only available viathe
WDSS or WATADS. Note that the decision threshold is given asarange of values. Thisisrange
at which the Heidke Skill Statistic (HSS) reaches ahigh “plateau” of values.2 We suggest that the
threshold be chosen which maximizes the Probability of Detection (POD) or minimizes the False
Alarm Ratio (FAR). The reader should also note that the thresholds in Table 4 were determined by
maximizing HSS for each variable independently, while the TDA adaptable parameter set study
considered maximizing CSI for combinations of variables. Hence, some parameters, such as TDA
depth, differ substantially from Table 4 to Table 2.

These decision threshold values should be used as guidance during the warning process. They
should not be used as “magic values’ to make warning decisions. However, when the values are
at least those valueswithin thethreshol d ranges, special considerations should be givenfor warning.
As always, the information should be integrated with the other data inherent in the integrated
warning system.
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Please use thelinksto the appropriate variabl e descriptionsin Table 4 to determine how to use each
variable during tornado warning operations.

18



5. Summary [Top]

Issuing tornado warnings remains a difficult but critical task for operational forecasters. Besieged
by an increasing amount of information, a National Weather Service meteorologist in a"warning
situation” usually depends on radar datato help make the final decision on whether or not to warn.

This document has summarized some of the cutting edge tornado hypotheses from the basic and
applied research community with thewarning forecaster inmind. Theseideasare constantly influx,
as new data are gathered, and as old data are thought of in different ways. Look to future editions
of this Tornado Warning Guidance for the latest in these research results.

This document also presents additional information for the new Build 10 Tornado Detection
Algorithm (TDA) to compliment the Build 10 Training Guide. Use them in concert.

In an attempt to determine which of 85 radar-derived independent variables could best discriminate
between tornadic and non-tornadic vortices, atotal of 43 unique storm cases were analyzed using
the NSSL MDA, TDA, and BWER. For the 2™ Edition of the Tornado Warning Guidance, the
statistical analysisresultsdiffer quiteabit from what was published in Edition 1. Goneisthenotion
of using Linear Discriminant Analysis (LDA) to determine best predictors. Since the 1% Edition,
two more years of statistical research have been conducted, and new better waysto analyze the data
are now known. Thisdocument contains some of those cutting edge ideas (some of which have not
yet been formally published). Through a variety of methods, a number of “best predictors’ have
been determined from both mesocyclone and TV S detection, which should be considered when
issuing tornado warnings. A brief summary of how each of these radar-derived parameters was
calculated and the physical significance of some is presented in bullet text form in Appendix A.
Threshold values for many of the “best predictors’ are shown in Table 4, and the graphs of
performance and probabilities used to determine the thresholds are provided in graphs PT1-PT15.

In the future, the statistics presented in Section 4 may be stratified by range and storm-type. A
subset of the 43-casesis currently being devel oped which includes Near-Storm Environment (NSE)
data from the Rapid Update Cycle (RUC-1) mesoscale model. NSE data is paramount to the
integrated warning system, and it ishoped that the NSE data, coupled withMDA, TDA, and BWER
output, will provide more clues for tornado warning guidance.

Our best guidance on using WSR-88D data in the tornado warning decision-making process
continues to be to closely examine the base data and use all three Doppler moments together
(reflectivity, velocity, and spectrum width). The supporting algorithms (Mesocyclone and TDA)
supply initial information about where to ook, important guidance about quantitative signature
parameter values, and help prevent failure to interrogate all important storms. However, the
algorithms are not highly skilled enough for stand-alone use. For TDA, it isrecommended to use
adaptable parameter sets of known skill score. Special consideration should be given to situations
where a TVS is detected in conjunction with a storm that already has a mesocyclone signature
detection. If thestorm hasarecognizabl ethree-dimensional, supercell structure(BWER, developing
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hook echo, etc), even greater consideration should be given for atornado warning with that storm.
The statistics in this document have shown that detection of signatures by totally independent
algorithmsand by datain multiple Doppler momentsisapowerful tool in highlighting which storms
are more likely to produce tornadoes.

Further improvement in the Mesocyclone and TDA Algorithms is possible by tuning them to the
type and character of storms which are a function of the near-storm environment. New and
improved adaptable parameter sets and ranges of values for individual adaptable parameters are
likely to befound for different storm types. Thoseinvolved inregional or local studies (most likely
with WATADS) are encouraged to develop data sets large enough to ensure that the analysis
produces statistically significant results.

Users should note that the statistics were based on afairly small number of storm days (43 days),
and, they represent an overall composite of al the storms analyzed. The actual probability that a
given storm being viewed by a WSR-88D will produce a tornado may be much higher or lower.
None of the data should in any way be used as "magic values' for issuing warnings. One should
always use all available data sources (including reflectivity data trends, spotter reports, storm
history, and the mesoscal e environment) before making afinal decision on whether or not to issue
atornado warning.

If you have any feedback for this document, please contact the editors or one of the contributorsin
the points-of-contact list. While every attempt has been made to create a complete document, the
usersinthefield, with first hand experience issuing tornado warnings, have awealth of experience
that can significantly enhancefuture versions of the Tornado Warning Guidance Document. Users
contributions to this knowledge base is invaluable, and sites are strongly encouraged to share
datasets and findings with the OSF and NSSL.
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Footnotes[Top]

1. The adaptable parameter TPV controls the minimum number of Pattern Vectors needed for
identification of a 2-D feature in the 88D-MA. A Pattern Vector is defined as a continuous run of
azimuthally adjacent radial velocitieswith increasing values (from max outbound to max inbound).
Lowering TPV [to a value between 6 and 10 (inclusive)] increases detection of smaller
mesocyclones. Return to text.

2. For more information on how these adaptable parameter changes affect algorithm skill, contact
Bob Lee at the OSF Application Branch. Return to text.

3. Recent testing by the OSF Applications Branch has identified a rare situation under which the
TDA may produce a large number of false alarms. The scenario is as follows. Poor receiver
calibration (i.e.,, A/D saturates before the automatic gain control steps in) can reduce the
effectivenessof clutter suppression. Thisclutter, when mixedwithreturnfrom strong thunderstorms
(dBZ > 40t045), will causethevelocity Dealiasing Algorithm to specklethevel ocity field with bins
of near zerovelocity. The TDA may identify pairsof velocity binsthat satisfy thecriteriafor TV Ss.
Under these circumstancesthe TDA may produce alarge number of falsealarms (six or more TV Ss
have been observed within avolume scan while a storm was passing over aWSR-88D site). More
information about this phenomena is available from Dave Zittel at the OSF Applications Branch.
Return to text.

4. The parameter values published in Lee and Mitchell 1999 are slightly different from the values
presented in Table 2 and in the WSR-88D Build 10 Training manual. Forecasters should use the
valuesin Table 2. Return to text.

5. Certain (mostly earlier) portions of this document are based on CSl, while other (mostly |ater)
portions are based on adifferent measure of performance, called Heidke Skill Statistic (HSS). This
change in the measure of performance was done because HSS has lately emerged as a "better”
measure of performance. The most important difference is that HSS incorporates the correct
forecasts of nonevents, while CSl doesnot. Thereasonsfor using CSI are mostly historical. Infact,
only recently hasit been shown that CS| has certain inadequacies. To elaborate further, it has been
shown in (Gandin and Murphy 1992, Marzban 19983, Marzban and Lakshmanan, 1998) that CS
is pathological in many respects, one of which is its "inequitability." Briefly, the use of an
inequitable measure can cause aforecaster to "hedge" the forecasts. For example, in the context of
the finding thresholds that maximize a measure of performance, the inequitability of the measure
can cause the optimal value of the threshold to bethelowest (or highest) value of the variableitself.
As such, severe over- or under-forecasting can occur (see Appendix B). For such reasons, it was
deemed necessary to replace CSI as a measure of performance with HSS.

Return to text in Section 3. Return to text in Section 4. Return to Table 2.

6. STORM DATA wasused aseither the partial or complete verification sourcefor all casesinthis
study. In some cases, data sets from VORTEX or other well-done damage surveys were used to
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supplement the STORM DATA report. This study, like most others, is limited by accuracy of the
verification data. Return to text.
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APPENDI X A [Top]

Summary of Algorithm Parameter “ best predictors’

Pleaserefer to Appendix C to match the parameter name and descriptionto the parameter numbers
presented in Section 4. The first 15 parameters are those listed as “ best predictors’ in Table 4.
These parametersarelisted in no particular order. Stumpf et al (1998) and Mitchell et. al (1998)
describe these parameters (for the MDA and TDA respectively) in much greater detail.

Subset | (MDA only):

MDA Depth

The total depth (m) of the 3D feature in NSSL MDA is calculated by adding the half-power
beamwidth to the top and the base of the meso feature. A depth of least 3 km has often been cited
as aminimum threshold depth for mesocyclonesthat produce tornadoes. However, on the average,
mini-supercells can have mesocyclone depths that are somewhat less (2.4-2.6 km). The 88D-
Mesocyclone Algorithm value on the PUP can serve as aproxy for this parameter. This parameter
isavailable on WATADS/WDSS in the MDA Table. Asthe value of this parameter increases, so
does the probability of tornado.

MDA Strength Rank

It is aranking (1-25) in NSSL MDA based on the strongest continuous "core" of mesocyclone
features (3 km deep, base < 5 km AGL) of a given strength rank. The original strength rank of the
2D MDA feature is computed using max rotational velocity difference and shear in an identified
pattern vector. The " Strength Rank™ is akin to assigning increasing numerical valuesto theregions
in the mesocyclone nomogram (but uses dlightly different criteria and more regions). A complete
explanation of this parameter is available in Stumpf et al. (1998). Asthe value of this parameter
increases, so does the probability of tornado. This parameter isonly available on WATADSWDSS
inthe MDA Table.

MDA Maximum Rot. Velocity

Thecalculationissimilar to low-altituderotational velocity except for the maximum valueof all 2D
features used to create the 3D MDA detection. Max. values of rotational velocity for agiven storm
displayed on the PUP can be computed by looking at the Vr shear function at multiple slicesin a
storm. Otherwise, thisparameter isavailableon WATADS/WDSSinthe MDA Table. Remember
that the vortex sampling limitations with range mean that lower values of this parameter at greater
ranges can be significant. As the value of this parameter increases, so does the probability of
tornado.
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MDA Age of mesocyclone

Longer-lived mesocyclones have been shown to produce more tornadoes and travel farther than
shorter-lived mesocyclones. For warning purposes, the history of a given storm is very important
interms of what the storm hasdone (i.e., hasthismeso already produced atornado?). Althoughthis
parameter is not available on the PUP, one could manually keep track of the age of a particular
mesocyclone. On WATADS/WDSS, use the number of white dots representing the previous
positions of the mesocyclone, and multiply by the volume scan update rate (5 or 6 minutes) to
determine the age. Asthe value of this parameter increases, so does the probability of tornado.

MDA Mesocyclone Strength Index (M Sl)

Anintegrated rotationa strength index from NSSL MDA, it is computed by vertically integrating
the strength ranks (multiplied by 1000) of all the 2D features used to create the 3-dimensional (3D)
feature. Itisnormalized by dividing by the depth of integration. A complete explanation of this
parameter isavailablein Stumpf et al. (1998). Asthevalue of this parameter increases, so doesthe
probability of tornado. This parameter is only available on WATADSWDSSin the MDA Table.

Subset |11 (TDA only):

TDA Base

Defined asthe lowest elevation height (AGL) of the 2D TDA feature. This parameter isavailable
in the TDA table on the PUP or WATADS/WDSS. Note that the probability of atornado being
produced by a storm increases steadily as the TV'S base (lowest altitude of the TVS circulation)
decreases. Although the HSS is maximized at a base higher than “zero”, interpret this number as
the highest value at which to consider taking action, and that all value at or below this warrant
special consideration.

TDA Depth [DPTH]
The total depth (m) of the 3D feature in NSSL TDA is calculated by adding the half-power
beamwidth to the top and the base of themeso feature. Thisparameter isavailableinthe TDA table

onthe PUP or WATADS/WDSS. Asthevalue of this parameter increases, so does the probability
of tornado.

TDA low-altitude gate-to-gate delta-V [LLDV]
Defined asthe gate-to-gate delta-v (m/s) at the lowest elevation slice of the 3D TDA feature, such

as 0.5 or 1.5 degree dice. This parameter is available in the TDA table on the PUP or
WATADS/WDSS. Remember that the vortex sampling limitations with range mean that lower
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values of this parameter at greater ranges can be significant. As the value of this parameter
increases, so does the probability of tornado.

TDA maximum gate-to-gate delta-V [MDV]

Defined as the maximum gate-to-gate delta-v (m/s) of all the 2D TDA features comprising the 3D
feature. Thisparameter isavailableinthe TDA tableonthe PUP or WATADS/WDSS. Remember
that the vortex sampling limitations with range mean that lower values of this parameter at greater
ranges can be significant. As the value of this parameter increases, so does the probability of
tornado.

Qubset 111 (MDA+TDA only):

Soecial note: Usethese parameter sonly when an MDA detection and TDA detection are both found
for the same radar vortex signature. Note that the decision threshold values the three TDA
parameters is different when using them for vortex signatures where only a TDA detection is
present.

MDA L ow-altitude Diameter

Defined asthe diameter (m) from the lowest elevation 2D MDA feature. The diameter corresponds
to the distance between the peak radial velocities used to calculate rotationa velocity. This could
be computed manually using the Vr Shear function on the PUP. Otherwise, this parameter is
availableonWATADS/WDSSinthe MDA Table. Asthevalueof thisparameter increases, so does
the probability of tornado.

MDA Low-altitude Rot. Velocity

Thisparticular parameter was cal culated from thelowest elevation slice that the 3D MDA detection
was found (note: it is NOT always at 0.5 degrees). A similar quantity can be computed at the
WSR-88D PUP by using the Vr shear function on the maximum inbound/outbound vel ocity coupl et
sampled at aparticular elevation slice. Computed by Vr shear function on the SRM or SRR product
at the lowest elevation angle, such as0.5 or 1.5 degreedice. Otherwise, this parameter isavailable
onWATADS/WDSSintheMDA Table. Remember that thevortex sampling limitationswithrange
mean that lower values of this parameter at greater ranges can be significant. Asthe value of this
parameter increases, so does the probability of tornado.

MDA Low-altitudeg-g del v
Defined asthe gate-to-gate delta-v (m/s) at the lowest elevation dlice of the 3D MDA feature, such

as 0.5 or 1.5 degree dlice. This can be manually determined using the PUP. Otherwise, this
parameter isavailableon WATADSWDSSintheMDA Table. Remember that thevortex sampling
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limitations with range mean that lower values of this parameter at greater ranges can be significant.
Asthe value of this parameter increases, so does the probability of tornado.

MDA CoreBase

Defined asthe height (AGL) of the lowest-elevation 2D "core" feature from NSSL MDA. (Note: a
"core" asdefined in NSSL MDA isbased on strength rank. The core must be at |east 3 km deep with
the base below 5 km and top at or below 8 km). Use the base of the 88D-Mesocyclone Algorithm
detection as a proxy to this number. Otherwise, this parameter is available on WATADS/WDSS
inthe MDA Table as“BASE”. Note that the probability of atornado being produced by a storm
increases steadily as the mesocyclone base (lowest atitude of the mesocyclone circulation)
decreases. Although the HSS is maximized at a base higher than “zero”, interpret this number as
the highest value at which to consider taking action, and that al value at or below this warrant
special consideration.

TDA low-altitude gate-to-gate delta-V [LLDV]

Defined as the gate-to-gate delta-v (m/s) at the lowest elevation slice of the 3D TDA feature, such
as 0.5 or 1.5 degree dice. This parameter is available in the TDA table on the PUP or
WATADS/WDSS. Remember that the vortex sampling limitations with range mean that lower
values of this parameter at greater ranges can be significant. As the value of this parameter
increases, so does the probability of tornado. Note that the decision threshold values for thisTDA
parameter, when there is an MDA and TDA detection present, is different when using them for
vortex signatures where only a TDA detection is present.

TDA maximum gate-to-gate delta-V [MDV]

Defined as the maximum gate-to-gate delta-v (m/s) of all the 2D TDA features comprising the 3D
feature. Thisparameter isavailableinthe TDA table onthe PUP or WATADS/WDSS. Remember
that the vortex sampling limitations with range mean that lower values of this parameter at greater
ranges can be significant. As the value of this parameter increases, so does the probability of
tornado. Notethat the decisionthreshold valuesfor thisTDA parameter, whenthereisan MDA and
TDA detection present, is different when using them for vortex signatures where only a TDA
detection is present.



These three remaining parameters were not found to be “ best predictors’ for the 1999 statistical
analysis, but they showed high predictive strength in the 1997 analysis, and they have shown to be
of particular importance to the warning guidance process. The reason the first two values here
were not “ best predictors’ probably results fromthe fact that a small per centage of mesocyclones
are close enough to the radar for these low-altitude phenomena to be measured.

MDA L ow-altitude Convergence

Calculated in this analysis of NSSL MDA data as the average radial convergence (avg. delta-v)
measured within the diameter (plus 2 km) of each 2-dimensional (2D) circulation feature analyzed
between 0 and 2km (AGL) inthe 3D detection. A similar value could be manually computed at the
PUP via the Vr shear function. Low-altitude convergence is often noted below the base of a
mesocyclonein its organizing stage. This parameter is not available on WATADSWDSS.

MDA Mid-altitude Conver gence

It is calculated the same as low-altitude convergence, except for 2D MDA featuresthat are at 2 to
4 km (AGL). This parameter is not available on WATADS/WDSS.

TDA Tornado Strength Index (TSl)

Thisis computed by vertically integrating the gate-to-gate delta-V of all 2D TDA features used to
create the 3D feature. It isnormalized by dividing by the depth of integration. This parameter is
similar to the Average Delta-V (AVDV) parameter that is available in the TDA table on the PUP.
Remember that the vortex sampling limitations with range mean that lower values of this parameter
at greater ranges can be significant. Itisavailableon WATADS/WDSSin an ascii text file. Asthe
value of this parameter increases, so does the probability of tornado.
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Technical discussion of statistical analysis of NSSL algorithm parameters

a Analysis

The following analysis was performed to re-evaluate the question “What can the radar-algorithm
dataoffer intheway of guidancefor atornado forecaster?” More specificaly, an attempt was made
to identify the particular variables that appeared to be the best predictors of tornadoes. Many of the
subtleties of that question have been extensively addressed in Marzban et a. (1999), and so only a
mention of them will be made herein.

Six data subsets will be examined:

Subset | : circulations detected by MDA, only.
Subset 11 : circulations detected by TDA, only.
Subset 111 : circulations detected by MDA and TDA, jointly.

Subset IV :  circulations detected by MDA and BWER, jointly.
Subset V : circulations detected by TDA and BWER, jointly.
Subset VI :  circulations detected by MDA, TDA, and BWER, jointly.

The total sample size, N, the number of non-tornadoes, N,, the number of tornadoes, N,, and the
a-priori probability (i.e. climatological, and prior to additional statistical analysis) of tornado, pl1
= N,/N, in each of these subsetsis given in Table 3. Also included is the number of attributes
(independent variables) in each subset.

The entire data set constitutes 43 days of storm data (Table 1). The MDA data consist of al MDA
detectionsthat are of Strength Rank > 1 [see Stumpf et a. (1998) for adefinition of Strength Rank].
The TDA data consist of all TDA detections whose low-altitude and mid-altitude gate-to-gate
velocity differencesare at least 11 ms*. All MDA and TDA detections are either associated with
tornadoes (if atornado has occurred inthelast 5 or 6 minute volume scan, isoccurring, or will occur
in 20 minutes from the volume scan of the detection), or not (called “non-tornadoes’ ). Both
algorithms used a 0 dBZ threshold for the Minimum Reflectivity adaptable parameter.

Asdiscussed in (Marzban et a. 1999), most users of MDA or TDA rely mostly on amental model
to guide them in interpreting the output of these algorithms. As a result, they do not rely on an
analytic mode (e.g., regression) to which one can apply ahost of statistical techniques designed to
addressthe question of best predictors. Even when amodel doesexist (likethe neural network), that
guestionisathorny one, at best; the absence of amodel rendersthe question eventhornier. For such
reasons, the question of best predictors is often best answered in a bi-variate fashion, i.e. one
independent variable (and one dependent variable) at atime.



In thisdocument, several such approacheswill be employed to address the question of determining
the best predictors of tornadoes.

b. Methods
i Posterior Probability Method

A first approach is to examine the posterior probability of a tornado, given the value of an
independent variable, P,(x). This probability can be calculated from the conditional frequency
distribution, N,(x), at a given value of x, where i = 0,1 refers to non-tornadoes and tornadoes,
respectively. Specifically, Bayes theorem (Marzban 1998b) implies

N;(X)

P.(X) = , 1)
N, (X) + No(X)

where

P,(x) = probability that a given value of x corresponds to a tornadic circulation,
No(X) = number of nontornadic circulations at a given value of x,

N,(X) = number of tornadic circulations at a given value of x, and

N = N, + N, = total number of circulations.

A “good” predictor is one whose P,(x) changes significantly as afunction of x. Three examples -
two, of a“good” predictor, and one of a“bad” predictor - are givenin Figure 4. The curve without
the O'sand 1'sis P,(x) asafunction of x, and the other two curves are the (normalized) probability
density functions for tornadoes (1), and non-tornadoes (0). In thisway, it is possible to assess the
predictive strength of each variable according to the change in P,(X) over the range of x. Notethe
nonlinear behavior of P;(x) in the middle plot. The plots for every predictor are not al shown, as
there are just too many. Instead, in the next subsection, information is provided about which
variables are considered the “ best predictors’ of tornadoes.

il. Corréeation Method

Another method for assessing the predictive strength of the variablesisto examinetheir correlations
withthedependent variable (i.e. tornado ground truth), specifically, Pearson'scorrel ation coefficient,
r. When both the independent and the dependent variable are continuous, r is a measure of linear
correlation between the two. Although in the current case the dependent variable is binary
(tornado/no-tornado), r does still offer ameasure of correlation, although a better description may
be association. One limitation of this method is that “nonlinear” variables, such as variable trends
(seethemiddle plot in Figure 4), will be assigned alow predictive strength, becauser isameasure
of linear correlation.



ii. Measures-based Method

An aternative approach is offered by considering the way in which aforecaster uses the variables.
The forecaster may be interested in issuing forecasts that optimize some categorical measure of
performance. To compute a categorical measure, the variable must be dichotomized, and this can
be done by introducing a decision threshold. For every value of the threshold one can compute the
corresponding value of the measure. Varying the threshold over the full range of the variable will
yield acorresponding change in the measure. The maximum value of the measure offers agauge of
the predictive strength of the corresponding variable. Consequently, the question of the best
predictors becomes one of ordering the variables according to the maximum val ue of some measure
of performance that can be obtained by dichotomizing each variable. Three measures will be
examined here: the Critical Success Index (CSl), the Heidke Skill Statistic (HSS), and Entropy
(ENT). Because each measure captures a different aspect of performance quality, the choice of the
best predictors may depend on the choice of the measure. (The definitions of these measures are
available in Appendix D, or upon request from Caren Marzban.) Asin the previous method, this
method too should berestricted tolinear variables; it assignsalow predictivestrength to “ nonlinear”
variables, because such variables would ideally require two thresholds to mark the boundaries
between “warning” and “no warning.”

iv. Correlations among predictors

Additionally, it is important to identify the variables - good or bad - that are correlated with one
another. Inthisway one can further reduce the number of variablesthat must be examined. Pearson's
correlation coefficient, r, can again be utilized to thisend. However, therare-event nature of the data
setsunder study can causer to beexcessively large. For thisreason the correl ation coefficients must
be computed for the two classes (non-tornadoes and tornadoes), separately. The variables that are
highly correlated for both classes may be considered statistically equivalent.

V. Linear Discriminant Analysis (LDA)

Finally, even though it has been argued (above) that the users rely mostly on a mental model for
guidance in issuing warnings, one may still explore the question of predictive strength within the
confines of a statistical model. In the 1% Edition of the Tornado Warning Guidance, Linear
Discriminant Analysis (LDA) was employed for this purpose. However, an LDA analysis of the
current data sets has revealed that the collinearity among the variables renders all measures of
predictive strength (in LDA) entirely ambiguous. Asaresult, athough theresultsof theanalysisare
available upon request, no further mention of LDA will be made herein.

C. Results

i Preliminaries



Even without any analysis, the a priori probability (i.e., prior to additional statistical analysis) of
tornado for the six subsets (Table 3) offersauseful guidance. An MDA detection of Strength Rank
greater than or equal to five (the “Mesocyclone” classification), and a TDA detecgion meeting the
Default-TV S parametersin Table 2, separately, have arelatively low probability of being tornadic
(i.e., 10.4% and 6.3% respectively); ajoint detection of a Mesocyclone and a Default-TVS has a
31% probability of being tornadic. This probability is raised to 38% if the joint MDA/TDA
detection isalso accompanied by aBWER. In other words, acirculation detected by both MDA and
TDA, or by all three algorithms (MDA, TDA, BWER) should be given serious consideration as
being tornadic. With additional analysis of the various attributes associated with each algorithm’s
detection, theposterior probability (posterior - meaning “ after” moreanalysisisdone), that theradar
signature is associated with atornado, can be increased.

The following analyses were performed on all six subsets of data. Of the subsets that included the
BWER Algorithm output, it was found that none of the “best predictors” were BWER attributes.
The sample size for the BWER setsis much smaller than the non-BWER sets, and is currently too
small for an accurate determination of “best predictors’. Itisimportant, however, torealizethat just
the presence of a BWER increases the likelihood that the radar signature is tornadic (as stated
above). Futurestatistical analysismay mergethe BWER setswith the non-BWER sets, and useonly
one BWER attribute, the Overall Confidencefactor (0-100%). For thenon-BWER data, the Overall
Confidence factor will just be set to 0%. Therefore, for this document, results from subsets 1V, V,
and VI are not included (please contact Caren Marzban of the contributors if more details are
desired).

The attributes (variables) in each of the first three subsets are defined and numerically labeled in
Appendix C. Henceforth, each of these variableswill be referred to by the corresponding number.

ii. Posterior Probability Method Results

The posterior probability and the histograms are too numerousto includein thisreport; there are as
many as the number of attributes for each subset (the right most column in Table 3), i.e. 143 (for
subsets |, I, and 111), three of which are shown in Figure 4. However, atedious examination of all

of these figures has led to a summary table (Table 5). Thetable classifies (in no particular order)

the various attributes of each subset into three classes, “poor”, “fair”, and “good” according to a
subjective interpretation of how drastically the posterior probability changes with the variable. In
contrast to the other two methods, this method can reliably assign a predictive strength to
“nonlinear” variables. A consequence of thisclassification schemeisthe disadvantage of not having
the capability to quantify the predictive strengthsin termsof ascalar (i.e. one-dimensional) quantity.

As aresult, the classification of the various attributesin Table 5 is somewhat subjective.

ii. Correlation Method Results

The correlation coefficients, r, between ground truth and each of the variablesin all the six subsets
aredisplayed in Figure 5. A positive (negative) value of r meansthat higher (lower) values of the
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corresponding variable are associated with tornadoes. The red error bars on the upper right of each
plot are the one-standard deviation error bars. As seen from the plots, there are no “outstanding”
predictors. In other words, many of the variables have approximately the samevalueof r. In order
toisolate aset of best predictors, one can sort the r'sin order of magnitude, and select the variables
whose r's stand above the rest. An example of thisis shown in Figure 6 where the r's of the 53
variablesin MDA (subset |) are ordered according to their magnitude. The “best” predictors of
tornadoes are (see Appendix C, for numbering): 20, 53, 27, 4, 8, 21, 25, 14, all with approximately
egual predictive strengths. It isworth mentioning that most of these variables are “independent” in
that the correlation coefficient between any pair of them is not exceedingly high. In fact, only one
pair - 53 and 25 - are highly correlated (r,=0.948, r,=0.950). The scatter plot between the two is
shown in Figure 7. The best predictors according to this method are tabulated in Table 6, in order
of their (statistically non-significant) predictive strength.

iv. Measur es-based Method Results

Asfor the measure-based method, Figure 8, Figure 9, and Figure 10 show the highest values of the
three measures - CSl, HSS, and ENT, respectively - as obtained by dichotomizing each variable.
The outstanding predictors according to this method are tabulated in Table 7, in order of their
(statistically non-significant) predictive strength.

Another important quantity in this method is the value, or the range of values, of the decision
threshold (warning/no-warning) for which the highest performanceisreached. These quantitiesare
given in the next subsection.

Onefinal comment about this measure-based method isin order. Thereissomeambiguity regarding
the predictive strength of a variable, because that strength may depend on the particular measure
being optimized. The reason for this is that different measures gauge different aspects of
performance. As such, it is important to select an appropriate measure. It has been shown in
(Marzban 1998a) that CSl ispathological in many respects. Indeed, one of its pathologiesis evident
in Figure 8, where the value of CSl is rather constant for al of the variables; thisis related to the
“inequitability” of CSl. Inequitability (Gandinand Murphy 1992, Marzban and Lakshmanan, 1998),
isdefined asthe use of aninequitable measurewhich can cause aforecaster to “ hedge’ theforecasts.
In the context of the finding thresholds that maximize ameasure of performance, inequitability can
causethe optimal value of the threshold to be thelowest value of thevariableitself. Assuch, severe
over- or under-forecasting can occur (seethe next subsection). Inequitability isillustrated in Figure
11, where the values of POD, FAR, CSl, and HSS (ENT is not shown) are plotted as a function of
thethreshold. For such reasons, it isadvisableto place less emphasis on the findings that are based
on CSl.



V. Results using correlations among predictors

Pairs of variables with high (> 0.9) correlation coefficients for both tornadic and non-tornadic
circulationsaregivenin Table8. R,[X][y] representsthe correlation coefficient between x andy, for
non-tornadic circulations, and r, represents the same quantity for tornadic circulations. The
probability that these values of r could be obtained by chance was computed and was found to be
zero (to 12 decimal places). Therefore, to a high level of significance, these values of r are
statistically significant. Most of these have ahigh r because they are essentially measuring similar
quantities.

d. Summary of Statistical Anaysis

Although the question of best predictorsisamultifaceted one, and therefore, deserving of asimilar
multifaceted analysis, for practical purposesit may be necessary to distill the many facetsinto one.
In other words, acknowledging that the there are many contingencies and ambiguitiesin addressing
that guestion, can one conclude a set of best predictors that is somewhat insensitive to the
ambiguities? The answer isin the affirmative, but it is necessary to provide two separate answers.
If an extensive and reliable list of best predictorsis desired, then the probabilistic method must be
adopted, according to which the best predictorsfor thefirst three subsetsare (in no particular order)

Subset I: 3, 4,9, 19, 20, 21, 25-27, 52, 53
Subset II: 2, 3,4
Subset I11: 5, 8, 20, 21, 27, 28, 33, 34, 35, 70, 71

Theseareasolisted in Table 9.

If, onthe other hand, asmall and restricted set of best predictorsisdesired, then an answer isoffered
by the best predictors common to al the “linear” methods (in no particular order).

Subset I: 4, 20, 21
Subset I1: 1,9
Subset 111: 14, 17, 27, 28, 59

These are also listed in Table 10. The range of values of the decision threshold over which
performance is maximized is given in Table 10, but only for the best predictors according to the
“linear” methods.

Refer to the Appendix C for thelist of the variables and to Appendix A for adescription of the best
predictors and some other related variables. Also refer to Table 4 for acloser look at the variable
threshold values and_Table 8 for those variables that are highly correlated (i.e. r,and r; > 0.9).
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List of algorithm parameters for each subset of data

Subset | (MDA)

CoNoO~WDNE

Range (km)
Base (m)
Depth (m)
Strength rank
Low-altitude diameter (m)
Maximum diameter (m)
Height of maximum diameter (m)
Low-altitude rotational velocity (m/s)
Maximum rotational velocity (m/s)
Height of maximum rotational velocity (m)

. Low-dltitude shear (m/s’km)
. Maximum shear (m/s/km)

Height of maximum shear (m)

Low-altitude gate-to-gate velocity difference (m/s)

Maximum gate-to-gate velocity difference (m/s)

Height of maximum gate-to-gate velocity difference (m)

Core base (m)

Core depth (m)

Age (min)

Strength index (M SI) weighted by average density of integrated layer

. Strength index (M SIr) “rank”
. Relative depth (%)

Low-altitude convergence (m/s)

Mid-altitude convergence (m/s)
Vertically-integrated rotational velocity (m/s)
Vertically-integrated Shear (m/s/km)

. Verticaly-integrated gate-to-gate velocity difference (m/s)

Trend base (m)
Trend depth (m)

. Trend strength rank

. Trend low-altitude diameter (m)

. Trend maximum diameter (m)

. Trend height of maximum diameter (m)

Trend low-altitude rotational velocity (m/s)

. Trend maximum rotational velocity (m/s)
. Trend height of maximum rotational velocity (m)
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37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
5l
52.
53.

Trend low-altitude shear (m/s'km)

Trend maximum shear (m/s/km)

Trend height of maximum shear (m)

Trend low-altitude gate-to-gate velocity difference (m/s)

Trend maximum gate-to-gate velocity difference (m/s)

Trend height of max g-t-g vel difference (m)

Trend strength index (M Sl) weighted average density of integrated layer
Trend strength index (MSIr) “rank”

Trend relative depth (%)

Trend low-altitude convergence (m/s)

Trend mid-altitude convergence (m/s)

Trend Vertically-integrated rotational velocity (m/s)

Trend Vertically-integrated Shear (m/s’km)

Trend Vertically-integrated gate-to-gate velocity difference (m/s)

Trend Delta-V slope

Integrated Rotational Strength (IRS) index (NWS method-add up 2D values)
IRS method - trapezoidal integration divided by depth of integration

Subset 11 (TDA)

CoNoO~WDNE

Base (m)

Depth [DPTH] (m)

Low-altitude gate-to-gate velocity difference [LLDV] (m/s)
Maximum gate-to-gate velocity difference [MDV] (m/s)
Height of maximum gate-to-gate velocity difference (m)
Low-altitude shear (m/s’/km)

Maximum shear (m/s/km)

Height of maximum shear (m)

Tornado Strength Index (TSI)

Trend base (M)

Trend depth (m)

Trend low-altitude gate-to-gate velocity difference (m/s)
Trend maximum gate-to-gate velocity difference (m/s)
Trend ht of max gate-to-gate velocity difference (m)
Trend low-altitude shear (m/s/km)

Trend maximum shear (m/s'km)

Trend height of maximum shear (m)

Trend Tornado Strength Index (TSI)

Range (km)
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bset 111 (MDA+TDA)

. Meso range (km)

Meso base (m)

. Meso depth (m)

Meso strength rank
Meso low-altitude diameter (m)
Meso maximum diameter (m)

. Meso height of maximum diameter (m)
. Meso low-altitude rotational velocity (m/s)
. Meso maximum rotational velocity (m/s)

. Meso height of maximum rotational velocity (m)

. Meso low-altitude shear (m/s’km)

. Meso maximum shear (m/s'km)

. Meso height of maximum shear (m)

. Meso low-altitude gate-to-gate velocity difference (m/s)

. Meso maximum gate-to-gate velocity difference (m/s)

. Meso height of maximum gate-to-gate velocity difference (m)
. Meso core base (m)

. Meso core depth (m)

. Meso age (min)

. Meso strength index (M Sl) weighted by average density of integrated layer
. Meso strength index (MSIr) “rank”

. Meso relative depth (%)

. Meso low-altitude convergence (m/s)

. Meso mid-altitude convergence (m/s)

. TVS base (m)

. TVS depth [DPTH] (m)

. TVS low-altitude gate-to-gate velocity difference [LLDV] (m/s)
. TVS maximum gate-to-gate velocity difference [MDV] (m/s)
. TV S height of maximum gate-to-gate velocity difference (m)
. TVS low-altitude shear (m/s/km)

. TVS maximum shear (m/s'/km)

. TV S height of maximum shear (m)

. Meso Vertically-integrated rotational velocity (m/s)

. Meso Vertically-integrated Shear (m/s’km)

. Meso Vertically-integrated gate-to-gate velocity difference (m/s)
. Meso trend base (m)

. Meso trend depth (m)

. Meso trend strength rank

. Meso trend low-altitude diameter (m)

. Meso trend maximum diameter (m)



41. Meso trend height of maximum diameter (m)

42. Meso trend low-altitude rotational velocity (m/s)

43. Meso trend maximum rotational velocity (m/s)

44. Meso trend height of maximum rotational velocity (m)

45. Meso trend low-altitude shear (m/s/km)

46. Meso trend maximum shear (m/s'km)

47. Meso trend height of maximum shear (m)

48. Meso trend low-altitude gate-to-gate velocity difference (m/s)

49. Meso trend maximum gate-to-gate velocity difference (m/s)

50. Meso trend height of max g-t-g vel difference (m)

51. Meso trend strength index (M SI) weighted by average density of integrated layer
52. Meso trend strength index (M SIr) “rank”

53. Meso trend relative depth (%)

54. Meso trend low-altitude convergence (m/s)

55. Meso trend mid-altitude convergence (m/s)

56. Meso trend Vertically-integrated rotational velocity (m/s)

57. Meso trend Vertically-integrated Shear (m/s/km)

58. Meso trend Vertically-integrated gate-to-gate vel ocity difference (m/s)
59.Tornado Strength Index (TSI)

60. TVStrend base (m)

61. TVStrend depth (m)

62. TV Strend low-altitude gate-to-gate velocity difference (m/s)

63. TV S trend maximum gate-to-gate velocity difference (m/s)

64. TV Strend height of maximum gate-to-gate velocity difference (m)
65. TV Strend low-altitude shear (m/s/km)

66. TV S trend maximum shear (m/s’km)

67. TVStrend height of maximum shear (m)

68. TV Strend Tornado Strength Index (TSl)

69. Meso trend Delta-V slope

70. Meso Integrated Rotational Strength (IRS) index (NWS method-add up 2D values)
71. Meso IRS (M SI method-trapezoidal integration divided by depth of integration)

Subsets 1V, V, and VI are not shown.
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Verification Measure Formulae

In the following, the subscripts “0" and “1" will refer to nontornadic and tornadic
circulations, respectively. The performance of a forecaster can be tabulated in terms of a
contingency table, defined as

[IC: Co0 [ of O'spredictedas0 # of 0'spredicted as 1]

C - table = ECs C4H B# of 1'spredicted as0 # of 1's predicted as 1H

0 . false alarms
Hn 1Sses hits
Thetotal number of nontornadic circulationsisgiven by N, = C, + C,, that of tornadic circulations
isN, =C; + C,, and the total samplesizeisN =N, + N,.
Two common quantities, Probability of Detection (POD) and False Alarm Ratio (FAR), are
easily calculated as

POD =

. FAR = 2,
C, C C,+C,

Similarly, the three measures, the Critical Success Index (CSl), the Heidke Skill Statistic (HSS),
and the Entropy (ENT) (also known as the Likelihood Ratio Chi-square) can be written as

CSI = ©
C, +C,+C,’
Jes - 2(c,c,-c,c,)

N,(C,+C,)+N,(c,+C,)’
4 E
LRC = - ) C log—,
Z | g Ci
where C, and E; are the contingency table and its (biased) expected value based on pure chance
(i.e., guessing), respectively, with the latter computed as
(c +C,) N, +c
TNAN(c,+c,) Ny(c,+c,)

Recall that C, and C, are the number of correctly classified nontornados and tornados,
respectively, and C, and C, are the number of incorrectly classified nontornados and tornados,
respectively.

For further details, consult the on-line articles at http://www.nhn.ou.edu/~marzban/.
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Table 1. WSR-88D data cases used for the statistical analysis of the NSSL MDA and TDA.

Radar Site Date # Tornadoes Storm Type
Melbourne, FL 3/25/92 0 supercells

Norman, OK 3/28/92 0 “null” case

Norman, OK 5/11/92 22 supercells

Norman, OK 9/2/92 1 supercell

Sterling, VA 4/16/93 7 mini supercells

Dodge City, KS 5/5/93 11 supercells

Dodge City, KS 5/7/93 9 supercells

Dodge City, KS 6/3/93 0 “null” case

Houston, TX 11/16/93 9 supercells (ascending mesocyclone devel opment)
Dodge City, KS 4/9/94 6 supercells

Houston, TX 4/15/94 1 supercells

St. Louis, MO 4/15/94 8 bowing squall line tornadoes
Oklahoma City, OK  4/27/94 0 “null” case

Sterling, VA 4/30/94 3 low-topped supercells
Tulsa, OK 5/6/94 3 supercells

Tulsa, OK 5/7/94 0 “null” case

Amarillo, TX 5/28/94 1 supercell

Lubbock, TX 6/9/94 0 “null” case

Memphis, TN 6/9/94 4 bowing squall line tornadoes
Melbourne, FL 11/15/94 6 Tropica cyclone mesos
Memphis, TN 11/27/94 7 supercells

Phoenix, AZ 2/13/95 1 mini supercell

Fort Worth, TX 4/19/95 18 supercells

Fort Worth, TX 5/4/95 0 “null” case

Fort Worth, TX 5/5/95 0 supercells

Fort Worth, TX 5/7/95 12 supercells

Goodland, KS 5/12/95 5 supercell

Dodge City, KS 5/16/95 2 supercells

Dodge City, KS 5/17/95 3 supercells

Amarillo, TX 5/22/95 8 supercell




Oklahoma City, OK 5/23/95 0 “null” case

Des Moines, 1A 5/27/95 6 supercells

Lubbock TX 6/2/95 9 supercells

Pueblo, CO 6/22/95 1 mini supercell
Minneapolis, MN 7/21/95 12 supercells
Minneapolis, MN 8/9/95 0 “null” case
Birmingham, AL 3/18/96 6 supercells

Denver, CO 5/22/96 1 supercells

Detroit, M1 6/22/96 3 supercells

Sterling, VA 7/12/96 6 tropical-cyclone mesos
Minneapolis, MN 10/26/96 9 low-topped supercells
Sacramento, CA 12/12/96 1 mini supercells
Amarillo, TX 6/11/97 6 supercells

TOTAL 207




Table 2. Optimized adaptable parameter values and TDA performance for various convective data
sets. The two right-hand columns are based on the composite data set.

Optimized (CSI Data Set

and FAR) Minimized OldTVS
Parameters and ) _ FAR Algorithm
TDA Composite | Isolated | SqLine/ || parameter || Performance
Performance (Default) Other Set

DPTH (km) 15 31 16 5.0 NA
LLDV (ms? 25 27 27 56 NA
MDV (ms?) 36 30 27 74 NA
POD (%) 32 43 18 2 7
FAR (%) 61 44 77 8 8
CSI& (%) 21 32 11 2 7




Table 3. Thesamplesizes, thea-priori probabilities, and the number of attributes. Thetotal sample
size is N, the number of non-tornadoes is N,, the number of tornadoes is N,, and the a-priori
probability (i.e. climatological, and prior to additional statistical analysis) of tornado is p, * 10°

Subset N N, N, p, * 107 No. Of
Attributes
I 19841 19222 619 3% 53
la 1968 1764 204 10.4% 53
I 6756 6402 354 5% 19
la” 126 118 8 6.3% 19
[ 1198 822 376 31% 71
Vv 1802 1645 157 9% 67
\ 1411 1276 135 9% 33
VI 493 307 186 38% 85

“Circulations detected by a MDA rank of five or greater, only
“Circulations detected by a TDA Default, only



Table 4. An interactive table summarizing the “best predictors’ from the statistical analyses for
subsets|, 11, and I11. Within thistable are linksto algorithm parameter descriptions from Appendix
A, probability plot figures, and decision threshold figures [based on Heidke Skill Statistic (HSS)].
The decision thresholds are the range of value at which special warning consideration should be
givenif valueareat or abovethisthreshold. Thetwo exceptionsareindicated by the*, inwhichthe
special consideration should begivento valuesat or belowthethreshold. Thevariablesmarked with
** are only available viathe WDSS or WATADS.

Subset | Variable | Name (from Appendix A) Probability and | HSSthreshold | HSS threshold
Threshold Plots | (metric units) (english units)
3 MDA Depth Fig. PT-1 10-11 km 33-36 kft
4 MDA Strength Rank Fig. PT-2 5 5
gAnR/A 9 MDA Max Rotational Velocity Fig. PT-3 18-22 ms? 35-43 kts
19 MDA Age Fig. PT-4 30-60 min 30-60 min
20** MDA Meso Strength Index (MSI) Fig. PT-5 3500-4000 3500-4000
I 1* TDA Base Fig. PT-6 2.8-3.3km 9.2-10.8 kft
A |2 TDA Depth [DPTH] Fig. PT-7 6.8-7.3 km 22.3-24.0 kft
only 3 TDA low-alt. Gate-to-gate delta-V [LLDV] Fig. PT-8 27-32 ms? 52-62 kts
4 TDA max gate-to-gate deltarV [MDV] Fig. PT-9 31-38 ms? 60-74 kts
Il 5* MDA low-alt. Diameter Fig. PT-10 6.7 km 3.6 Nmi
8 MDA low-alt. Rot. Vel. Fig. PT-11 19-24 ms* 37-47 kts
gﬂngA 14 MDA low-at. gate-to-gate delta-V Fig. PT-12 32-36 ms? 62-70 kts
TDA 17* MDA Core Base Fig. PT-13 2.4-2.6 km 7.9-8.5 kft
27 TDA low-alt. gate-to-gate delta-V [LLDV} Fig. PT-14 35-42 ms? 68-81 kts
28 TDA max gate-to-gate delta-V [MDV] Fig. PT-15 42-52 mst 81-101 kts




Table 5. A classification of the predictors according to the posterior probability method. See
Appendix C for the list of the variables.

Predictive Strength Predictors (see Appendix C)
Subset | | Good 3,4,9,19,20,21,25-27,52,53
Fair 2,8,11,12,14,15,18,22,23,30,33,34-37,41,43,44,48-51
Poor 1,5,6,7,10,13,16,17,24,28,29,31,32,38-40,42,45-47
Subset I | Good 2,34
Fair 1,5-13,15,16,18
Poor 14,17,19
Subset |11 | Good 5,8,20,21,27,28,33,34,35,70,71
Fair 2,4,9-17,19,22-25,29-32,44-47,59,60,62,63,65-69
Poor 1,3,6,7,18,26,36,37-43,48-58,61,64




Table 6. The best predictors according to the correlation-based method. Variables enclosed in
parentheses have statistically equivalent predictive strengths. See Appendix C for the list of the
variables.

Subset Best Predictors

| (20,27,53),(4,8,14,21,25)

Il 1,3,(4,5,8,9)

[l (14,27),(11,30,59),(8,17,20,28,34)




Table7. The“Top 5" predictors according to the measure-based method. See Appendix C for the
list of the variables.

Best Predictors

Subset | CSI HSS ENT
I 20,14,4,53,15 53,20,14,4,21 4,8,25,21,20
I 3,2,94,7 32941 1,9,10,8,5

"l 59,23,27,54,11 | 59,14,17,27,28 | 59,27,14,17,28




Table 8. Correlation coefficients for tornadic (1) and non-tornadic (0) circulations for the highly
correlated variables in the six subsets. The corresponding pair of variables may be considered
statistically equivalent.

Subset Correlation Coefficients

| ro[17][2]=0.940, r,=0.90 ro[50][41]=0.919, r,=0.906
ro[48][35]=0.923, r,=0.922 ro[50][48]=0.911, r,=0.912
ro[48][43]=0.911, r,=0.935 ro[53][25]=0.948, r,=0.950

Il ro[8][5]=0.973, r,=0.963 r[17][4]=0.981, r,=0.967

[l ro[32][29]=0.973, r,=0.955 ro[71][33]=0.937, r,=0.938
ro[67][64]=0.975, r,=0.940




Table 9. The variable considered “best predictors’ common to the probabilistic method. See
Appendix C for the list of the variables.

Subset | Variable Name

| 3 MDA Depth
4 MDA Strength Rank
9 MDA Max Rotational Velocity
19 MDA Age
20 MDA MSI
21 MDA MSI “rank”
25 MDA Vertically-integrated rotational velocity
26 MDA Vertically-integrated shear
27 MDA Vertically-integrated gate-to-gate delta-V
52 MDA Integrated Rotational Strength (IRS) Index
53 MDA IRS Index (divided by depth of integration)
I 2 TDA Depth [DPTH]
3 TDA low-altitude gate-to-gate delta-V [LLDV]
4 TDA Maximum gate-to-gate deltarV [MDV]
1 5 MDA low-altitude diameter
8 MDA low-altitude rotational velocity
20 MDA MSI
21 MDA MSI “rank”
27 TDA low-altitude gate-to-gate delta-V [LLDV]
28 TDA Maximum gate-to-gate deltarV [MDV]
33 MDA Vertically-integrated rotational velocity
34 MDA Vertically-integrated shear
35 MDA Vertically-integrated gate-to-gate delta-V
70 MDA Integrated Rotational Strength (IRS) Index

71 MDA IRS Index (divided by depth of integration)




Table10. Thevariableconsidered “best predictors’ commonto al the*linear” methods. Therange
of thresholdsover which performanceis maximizedisalso shown. The* symbol indicatesthat the
maximum of CSI occurs at the lowest value of the variable. See Appendix C for the list of the

variables.
Subset | Variable | Name Csl HSS ENT
I 4 MDA Strength Rank 4-5 4-5 1-2
20 MDA MS| 3000-4000 3500-4000 1600-2200
21 MDA MSI “rank” 3-5 4-5 1-3
I 1 TDA Base 1000-1500 650-1500 m | 1900-2500 m
9 Tornado Strength 3000-6500 5000-7500 2500-3500
Index (TSI)
1] 14 MDA LL gate-to-gate | 20-26 ms™* 29-40 ms* 24-36 ms*
deltaV
17 MDA Core base 2300-3000 m* | 1500-2500 m | 2400-2700 m
27 TDA LL gate-to-gate | 23-30 ms™ 33-42 ms* 27-42 ms*
deltaV [LLDV]
28 TDA max gate-to-gate | 24-37 ms™ 44-50 ms* 42-47 ms*
deltaV [MDV]




Figure PT-1. MDA Depth (m): a) Probability plot. Inred (solid line) is the probability from Eq.
(1) in Appendix B. The dashed (dotted) linewith the 1's (0's) isthe probability density of tornadic
(non-tornadic) detections; b) Decision Threshold plot. POD isinred, FARisingreen, and HSS* 10
isin black. For subset | (MDA) only.
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Figure PT-2. MDA Strength Rank: a) Probability plot. Inred (solid line) is the probability from
Eqg. (1) in Appendix B. The dashed (dotted) line with the 1's (0's) is the probability density of
tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred, FARisingreen, and
HSS*10isin black. For subset | (MDA) only.
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Figure PT-3. MDA Maximum Rotationa Ve ocity (m/s): a) Probability plot. Inred (solidline) is
the probability from Eq. (1) in Appendix B. The dashed (dotted) line with the 1's (0's) is the
probability density of tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred,

FARisingreen, and HSS*10 isin black. For subset | (MDA) only.
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Figure PT-4. MDA Age (minutes): a) Probability plot. Inred (solid line) isthe probability from
Eqg. (1) in Appendix B. The dashed (dotted) line with the 1's (0's) is the probability density of
tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred, FARisingreen, and
HSS*10isin black. For subset | (MDA) only.
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Figure PT-5. MDA Mesocyclone Strength Index (MSI): a) Probability plot. Inred (solid line) is
the probability from Eq. (1) in Appendix B. The dashed (dotted) line with the 1's (0's) is the
probability density of tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred,
FARisingreen, and HSS*10 isin black. For subset | (MDA) only.
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Figure PT-6. TDA Base (m AGL): a) Probability plot. Inred (solid line) is the probability from
Eqg. (1) in Appendix B. The dashed (dotted) line with the 1's (0's) is the probability density of
tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred, FARisingreen, and
HSS*10isin black. For subset [ (TDA) only.

0.5 T T T T T T
2 04 - .
B
=
A
> A
= L FARN i
i= 0.3 AN
a] ! A
e / K
a / 1
5 ; \
302 [ o .
fal I L7 U ]
E ,0 A “ﬂﬂ_,__g
e L \l\ Tl
0T L, ~ ]
01, . 0.
0 S "o,
——+.
T ~g_ . R‘n
0 : ' , L TS B
0 2000 4000 6000
TDA Base (m AGL)
1 : . - T : T
h\ FAR
0.8 - .
® 0.6 .
c
o
E
=}
=
2 04 -
0.2 - .
0 L 1 1 L
0 2000 4000 6000
TDA Base (m AGL)




Figure PT-7. TDA Depth [DPTH] (m): a) Probability plot. Ingreen (solid line) isthe probability
from Eq. (1) in Appendix B. The dashed (dotted) linewith the 1's (0's) is the probability density of
tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred, FARisingreen, and
HSS*10isin black. For subset [ (TDA) only.
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Figure PT-8. TDA low-dtitude Gate-to-gate delta-V [LLDV] (m/s): &) Probability plot. Inred
(solid line) isthe probability from Eq. (1) in Appendix B. Thedashed (dotted) linewiththe1's(0's)
is the probability density of tornadic (non-tornadic) detections; b) Decision Threshold plot. POD
isinred, FAR isin green, and HSS*10isin black. For subset Il (TDA) only.
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Figure PT-9. TDA maximum gate-to-gate delta-V [MDV] (m/s): a) Probability plot. Inred (solid
line) isthe probability from Eq. (1) in Appendix B. The dashed (dotted) linewiththe 1's(0's) isthe
probability density of tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred,
FARisingreen, and HSS*10isin black. For subset I (TDA) only.
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Figure PT-10. MDA low-altitude Diameter (m): a) Probability plot. In red (solid line) is the
probability from Eq. (1) in Appendix B. Thedashed (dotted) linewith the 1's (0's) isthe probability
density of tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred, FAR is
in green, and HSS*10 isin black. For subset 11l (MDA+TDA) only.
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Figure PT-11. MDA low-altitude rotational velocity (m/s): a) Probability plot. Inred (solid line)
is the probability from Eq. (1) in Appendix B. The dashed (dotted) line with the 1's (0O's) is the
probability density of tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred,
FARisingreen, and HSS*10isin black. For subset Il (MDA+TDA) only.
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Figure PT-12. MDA low-dltitude gate-to-gate delta-V (m/s): a) Probability plot. Inred (solidline)
is the probability from Eq. (1) in_ Appendix B. The dashed (dotted) line with the 1's (0O's) is the
probability density of tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred,
FARisingreen, and HSS*10isin black. For subset Il (MDA+TDA) only.
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Figure PT-13. MDA CoreBase(m AGL): a) Probability plot. Inred (solid line) isthe probability
from Eq. (1) in Appendix B. The dashed (dotted) linewith the 1's (0's) is the probability density of
tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred, FARisingreen, and
HSS*10isin black. For subset I1l (MDA+TDA) only.
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Figure PT-14. TDA low-dtitude Gate-to-gate delta-VV [LLDV] (m/s): a) Probability plot. Inred
(solid line) isthe probability from Eq. (1) in Appendix B. Thedashed (dotted) linewiththe1's(0's)
is the probability density of tornadic (non-tornadic) detections; b) Decision Threshold plot. POD
isinred, FAR isin green, and HSS*10 isin black. For subset [1l (MDA+TDA) only.
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Figure PT-15. TDA maximum gate-to-gatedelta-V [MDV] (m/s): @) Probability plot. Inred (solid
line) isthe probability from Eq. (1) in Appendix B. The dashed (dotted) linewiththe 1's(0's) isthe
probability density of tornadic (non-tornadic) detections; b) Decision Threshold plot. POD isinred,
FARisingreen, and HSS*10isin black. For subset Il (MDA+TDA) only.
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Figure 1. NWS nomogram for mesocyclones with a diameter of 1.0 nm.
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Figure 2. NWS nomogram for mesocyclones with a diameter of 2.0 nm.
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Figure 3. NWS nomogram for mesocyclones with a diameter of 3.5 nm.
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Figure 4. Two examples of a “good” predictor (top and middle), and one example of a “bad’
predictor (bottom).
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Figure 5. The correlation coefficients between the dependent variable (ground truth) and each of
the independent variables for the first three subsets (1, 11, and I11).
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Figure 6. The 53 correlation coefficientsin Subset | (i.e. MDA), ordered according to magnitude.
8 variables (in the smaller square) can be identified as the best predictors, and these can be
supplemented with another 5 variables (in the larger square).

DS T ! T ! T ! T ! T I

0.25 | .

0.2

F 0.15

0.1

0.05

60

Integers




Figure 7. The scatter plot between variables 25 and 53 in subset | (i.e. MDA). The correlation
coefficient between the two variablesis 0.948, for non-tornadic circulations (black), and 0.950, for
tornadic circulations (red).
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Figure 8. The maximum value of the Critical Success Index (CSI) obtained by dichotomizing the
variablesin thefirst three subsets (1, 11, and I11).
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Figure 9. The maximum value of the Heidke Skill Statistic (HSS) obtained by dichotomizing the
variablesin thefirst three subsets (1, 11, and I11).
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Figure 10. The maximum value of the Entropy (ENT) obtained by dichotomizing the variablesin
thefirst three subsets (1, 11, and I11).
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Figure11. Anillustration of the “inequitability” of the CSI. Note that the maximum value of CSI
occurs for the smallest value of delta-V.
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